Nasa conducts MORE secret tests of its ‘impossible engine’: Study reveals fuel-free thrusters do work, but no one knows why


posted
Categories: Energy

Applications:

The applications of such a propulsion drive are multi-fold, ranging from low Earth orbit (LEO) operations, to transit missions to the Moon, Mars, and the outer solar system, to multi-generation spaceships for interstellar travel.

Under these application considerations, the closest-to-home potential use of EM Drive technology would be for LEO space stations – such as the International Space Station.

In terms of the Station, propellant-less propulsion could amount to significant savings by drastically reducing fuel resupply missions to the Station and eliminate the need for visiting-vehicle re-boost maneuvers.

The elimination of these currently necessary re-boost maneuvers would potentially reduce stress on the Station’s structure and allow for a pro-longed operational period for the ISS and future LEO space stations.

Likewise, EM drive technology could also be applied to geostationary orbit (GEO) satellites around Earth.

For a typical geostationary communications satellite with a 6kW (kilowatt) solar power capacity, replacing the conventional apogee engine, attitude thrusters, and propellant volume with an EM Drive would result in a reduction of the launch mass from 3 tons to 1.3 tons.


The satellite would be launched into LEO, where its solar arrays and antennas would be deployed. The EM-drive would then propel the satellite in a spiral trajectory up to GEO in 36 days.

Moving out from LEO, Mr. March, from NASA EagleWorks, noted that a spacecraft equipped with EM drive technology could surpass the performance expectations of the WarpStar-I concept vehicle.

If such a similar vehicle were equipped with an EM Drive, it could enable travel from the surface of Earth to the surface of the moon within four hours.

Such a vehicle would be capable of carrying two to six passengers and luggage and would be able to return to Earth in the same four-hour interval using one load of hydrogen and oxygen for fuel cell-derived electrical power, assuming a 500 to 1,000 Newton/kW efficiency EM Drive system.

While the current maximum reported efficiency is close to only 1 Newton/kW (Prof. Yang’s experiments in China), Mr. March noted that such an increase in efficiency is most likely achievable within the next 50 years provided that current EM Drive propulsion conjectures are close to accurate.

Far more ambitious applications for the EM Drive were presented by Dr. White and include crewed missions to Mars as well as to the outer planets.

Specifically, these two proposed missions (to Mars and the outer planets) would use a 2 MegaWatt Nuclear Electric Propulsion spacecraft equipped with an EM Drive with a thrust/powerInput of 0.4 Newton/kW.

With this design, a mission to Mars would result in a 70-day transit from Earth to the red planet, a 90-day stay at Mars, and then another 70-day return transit to Earth.

According to Dr. White, “A 90 metric ton, 2 MegaWatt nuclear electric propulsion mission to Mars [would have] considerable reduction in transit times due to having a thrust-to-mass ratio greater than the gravitational acceleration of the Sun (0.6 milli-g’s at 1 Astronomical Unit).”

Furthermore, this type of mission would have the added benefit of requiring only a “single heavy lift launch vehicle” as compared to “a current conjunction-class Mars mission using chemical propulsion systems, which would require multiple heavy lift launch vehicles.”

Presenting at the “Human Outer Solar System Exploration via Q-Thruster Technology” panel at IEEE, 2014, Mr. Joosten and Dr. White explained that “only 12 days would be utilized spiraling up from a 400 km low Earth orbit to achieve escape velocity and only 5 days spiraling down to a 400 km low Mars orbit.”


While these spiral trajectories around Earth would have to be carefully designed to avoid or minimize time in the most problematic regions of the Van Allen radiation belts that could expose crewmembers to undesirable levels of radiation, Mr. Joosten and Dr. White note that “These relatively rapid transits would argue for mission strategies where the ‘Q-Ship’ (EM Drive ship) operates between the lowest orbits possible to minimize the launch requirements of crew and supplies from Earth and lander complexity at Mars.”

Moreover, this type of EM Drive-enabled mission could negate the need to bring along, for the duration of the mission, a high-speed reentry vehicle to return a Mars crew back to the Earth’s surface because “By quickly spiraling into Earth orbit at the end of the mission, the crew could readily be retrieved via a ‘ground-up’ launch.

“While the fast Mars transits that Q-Thruster technology [EM drive] could enable would be revolutionary, the independence from the limitations of departure and arrival windows may ultimately be more so,” added Mr. Joosten and Dr. White.

This means that an EM drive ship mission could be designed without consideration of the every-two-year interplanetary conjunction launch windows that currently govern Earth-Mars transit missions and could help stabilize and provide more routine Mars crew rotation timetables.

This same elimination of inter-planetary conjunction-enabled launch windows would be applied to crewed missions to the outer planets as well.

For such a mission, such as a crewed flight to the outer planets – specifically, a Titan/Enceladus mission at Saturn – an EM Drive would allow for a 9-month transit period from Earth to Saturn, a 6-month in-situ mission at Titan, another 6-month in-situ mission at Enceladus, and a 9-month return trip to Earth. This would result in a total mission duration of just 32 months.

However, EM drive applications are not limited to Mars or outer solar system targets.

Applications of this technology in deep space missions have already received conceptual outlines.

In particular, the Alpha Centauri system, the closest star system to our solar system at just 4.3 lights year’s distance, received specific mention as a potential mission destination.

Mr. Joosten and Dr. White stated that “a one-way, non-decelerating trip to Alpha Centauri under a constant one milli-g acceleration” from an EM drive would result in an arrival speed of 9.4 percent the speed of light and result in a total transit time from Earth to Alpha Centauri of just 92 years.

However, if the intentions of such a mission were to perform in-situ observations and experiments in the Alpha Centauri system, then deceleration would be needed.

This added component would result in a 130-year transit time from Earth to Alpha Centauri – which is still a significant improvement over the multi-thousand year timetable such a mission would take using current chemical propulsion technology.

The speeds discussed in the Alpha Centauri mission proposal are sufficiently low that relativity effects are negligible.

Bringing EM Drives to reality:

While such mission proposals are important to consider, equally as important are the considerations toward development of the needed technology and procurement long-lead items necessary to make this power technology a reality.

Specifically, a useful EM Drive for space travel would need a nuclear power plant of 1.0 MWe (Megawatts-electric) to 100 MWe.

While that sounds significant, the U.S. Navy currently builds 220 MW-thermal reactors for its “Boomer” Ohio class ICBM vehicles.

Thus, the technology to build such reactors is available, and the technology needed to build such a device for space-based operations has been around since the 1980s.

The limiting factors for further testing and development of this potentially revolutionary space exploration technology are funding to verify and characterize its operations, and the political will to develop nuclear power for space applications.

  Page Turn